B.Sc. Semester III (Honours) Examination, 2018-19 MATHEMATICS

Course ID : 32112
Course Code : SHMTH-302C-6(T)

Course Title : Group Theory I

The figures in the margin indicate full marks.
 Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Let $G=\left\{\left(\begin{array}{ll}a & 0 \\ b & 1\end{array}\right): a, b \in \mathbb{R}, a \neq 0\right\}$. Does G form a group with respect to usual matrix multiplication? Justify your answer.
(b) Prove that the subgroup $S L_{n}(\mathbb{R})$ is normal in the general linear group $G L_{n}(\mathbb{R})$.
(c) Find the subgroup generated by $\{6,8\}$ in the group $(\mathbb{Z},+)$.
(d) Suppose G is a cyclic group such that G has exactly three subgroups viz. $G,\{e\}$ and a subgroup of order 7 . What is the order of G ?
(e) Find the order of the permutation $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 1 & 3 & 2 & 6\end{array}\right)$.
(f) Determine the number of elements of order 5 in $\mathbb{Z}_{25} \oplus \mathbb{Z}_{5}$.
(g) Let G be a group and $a \in G$. Prove that the mapping $f_{a}: G \rightarrow G$, defined by $f_{a}(x)=a x$ for all $x \in G$, is one to one and onto.
(h) Let G and H be two groups. Define a function $f: G \times H \rightarrow G$ by $f((a, b))=a$ for all $(a, b) \in G \times H$. Prove that f is a homomorphism. Evaluate $\operatorname{ker} f$.
2. Answer any four questions:
(a) Let H be a subset of a group G and let the set $N(H)$, called the normalizer of H in G, be defined by $N(H)=\left\{a \in G \mid a H a^{-1}=H\right\}$. Prove that $N(H)$ is a subgroup of G. If in addition H be a subgroup of G, then prove that H is normal in G if and only if $N(H)=G$.
(b) (i) Suppose H is a finite subgroup of a group G with $O(H)=n$. If there is no other subgroup of G with n elements then prove that H is a normal subgroup of G.
(ii) Prove that alternating group A_{n} is a normal subgroup of the permutation group S_{n}.
(c) Let, H and K be subgroups of a group G with K normal in G. Then prove that $H / H \cap K \simeq$ $H K / K$.
(d) (i) Prove that $(\mathbb{Q},+)$ is not cyclic.
(ii) Show that every subgroup of a cyclic group is cyclic.
(e) (i) Let G be a group of finite order n and $a \in G$. Then prove that $\mathrm{o}(a)$ divides n and $a^{n}=e$.
(ii) Let p be a prime integer and a be an integer such that p does not divide a. Then using Lagrange's theorem show that $a^{p-1} \equiv 1(\bmod p)$.
(f) State and prove Cayley's theorem.
3. Answer any one question:
$10 \times 1=10$
(a) (i) Show that any non-identity permutation $\alpha \in s_{n}(n \geq 2)$ can be expressed as a product of disjoint cycles, each of length ≥ 2.
(ii) Give an example (with reason) of a non-cyclic, commutative group of which each subgroup is cyclic.
(iii) If the order of a cyclic group G is divisible by a positive integer m then prove that there exists a unique subgroup of order m of G.
$5+2+3=10$
(b) (i) State and prove Lagrange's theorem on order of subgroup.
(ii) Show that $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic but of same cardinality.
(iii) Find all the group homomorphisms from $\left(\mathbb{Z}_{6},+\right)$ into $\left(\mathbb{Z}_{4},+\right)$.
$4+3+3=10$
